Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thermal A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Thermal Analysis and Calorimetry
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An extensive review of preparation, stabilization, and application of single and hybrid nanofluids

Authors: Pritam Kumar Das; Apurba Kumar Santra; Ranjan Ganguly; Santosh Kumar Dash; Suresh Muthusamy; MizajShabil Sha; Kishor Kumar Sadasivuni;

An extensive review of preparation, stabilization, and application of single and hybrid nanofluids

Abstract

AbstractThe researchers attract nanofluids due to their improved thermal and physical properties compared to the base fluid. The colloidal mixture of nanometre-sized particles with conventional fluid is known as nanofluids. Compared with single nanofluids, hybrid nanofluids show better enhancement in thermophysical properties. Combining nanoparticles into the host fluid is called a hybrid nanofluid. The preparation of nanofluid needs more importance. However, the physiochemical properties of the nanofluid mainly depend on the stability of the nanofluid. The article aims to provide detailed information about preparing different types of single and hybrid nanofluids dispersed in various base fluids, preparation techniques, stabilization processes, applications and challenges. Different types of surfactants and characterization methods are suggested to improve the stability of the prepared solution. It was observed that all types of nanoparticles and hybrid nanoparticles could be synthesized with different base fluids with the help of the sonication process, particle-to-surfactant ratio, magnetic stirrer and many more. The two-step method is mostly preferred by the researchers compared to the single-step method to prepare the nanofluid. Application of single and hybrid nanofluids has been highlighted in different areas; few challenges have also been identified and must be checked before implementation in the industry.

Country
Qatar
Keywords

Application and challenges, Different base fluids, Preparation and characterization techniques, 330, Hybrid nanofluids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
hybrid