
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Well-to-wheels greenhouse gas and air pollutant emissions from battery electric vehicles in China


Hewu Wang

Ye Wu

Hewu Wang

Ye Wu
Electric vehicles (EVs) play a crucial role in addressing climate change and urban air quality concerns. China has emerged as the global largest EV market with 1.2 million EVs sold in 2018. This study established a novel life cycle energy use and emission inventory collecting up-to-date data including the electricity generation mix, emission controls in the power and industrial sectors, and the energy use in the fuel transport to estimate the well-to-wheels (WTW) greenhouse gas (GHG), and air pollutant emissions for battery electric vehicles (BEVs) and gasoline passenger vehicles in China. The results show that an average BEV has 35% lower WTW GHG emissions than an average gasoline car. BEVs reduce volatile organic compounds (VOCs) and nitrogen oxides (NOX) emissions by 98% and 34%, respectively, but have comparable or slightly higher primary fine particulate matter (PM2.5) and sulfur dioxide (SO2) emissions. Compact and small-size vehicles generally have lower GHG and air pollutant emissions than mid- and large-size vehicles. Class A vehicles contribute the most in the absolute amount of GHG and air pollutant emissions and therefore have the biggest potential for emission reduction. Our results suggest that global policymakers should continue to promote the transition to clean power sources, emission control, and fuel economy regulations, which are critical to enhancing emission mitigation benefits of BEVs. We also suggest EV development strategies should be formulated targeting vehicle class with the biggest emission mitigation potentials.
- Tsinghua University China (People's Republic of)
- University of Michigan–Flint United States
- Society of Automotive Engineers International United States
- Argonne National Laboratory United States
- SAE International India
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% 123 readers on Mendeley
