
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessing compounding climate-related stresses and development pathways on the power sector in the central U.S.

handle: 1721.1/153925
AbstractFuture configurations of the power system in the central region of the USA are dependent on relative costs of alternative power generation technologies, energy and environmental policies, and multiple climate-induced stresses. Higher demand in the summer months combined with compounding supply shocks in several power generation technologies can potentially cause a “perfect storm” leading to failure of the power system. Potential future climate stress must be incorporated in investment decisions and energy system planning and operation. We assess how projected future climate impacts on the power system would affect alternative pathways for the electricity sector considering a broad range of generation technologies and changes in demand. We calculate a “potential supply gap” metric for each pathway, system component, and sub-region of the US Heartland due to climate-induced effects on electricity demand and power generation. Potential supply gaps range from 5% in the North Central region under mild changes in climate to 21% in the Lakes-Mid Atlantic region under more severe climate change. We find increases in electricity demand to be more important in determining the size of the potential supply gap than stresses on power generation, while larger shares of renewables in the power system contribute to lower supply gaps. Our results provide a first step toward considering systemic climate impacts that may require changes in managing the grid or on potential additional capacity/reserves that may be needed.
- Electric Power Research Institute United States
- Electric Power Research Institute United States
- Massachusetts Institute of Technology United States
Global and Planetary Change, Ecology, 330
Global and Planetary Change, Ecology, 330
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
