Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publications Open Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nonlinear Dynamics
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the dual Craig–Bampton method for the forced response of structures with contact interfaces

Authors: ZUCCA, Stefano;

On the dual Craig–Bampton method for the forced response of structures with contact interfaces

Abstract

Assembled structures are characterized by contact interfaces that introduce a local non-linearity and affect the dynamics of the assembly in terms of resonance frequencies and vibration levels. To assess the forced response levels of the assemblies during the design, nonlinear dynamic analyses are performed and, in order to reduce the computation time, spatial and temporal reductions of the governing equations must be used. A classical way to achieve temporal reduction is to implement the harmonic balance method to turn the time-domain differential governing equations into frequency-domain algebraic equations. Due to the local nature of contact interfaces, which usually involve a subset of degrees of freedom (dofs) of the structure, a common strategy to achieve spatial reduction is to use component mode synthesis (CMS), by retaining the contact dofs as master dofs. In this paper, a recent CMS approach, named dual Craig–Bampton method (Rixen in J Comput Appl Math, 2004. doi: 10.1016/j.cam.2003.12.014 ), is applied to the nonlinear forced response of structures with contact interfaces. The spectral orthogonality of the two subsets of mode shapes used as a projection basis is exploited to write a set of algebraic equations of the contact dofs in the frequency domain, with no need to compute the reduced matrices of the system. Different formulations of the governing equations are proposed for different configurations (i.e., outer contacts, inner contacts and structures with floating components), and two academic numerical test cases are used to demonstrate the method.

Country
Italy
Related Organizations
Keywords

Contacts; Forced response; Localized non-linearity; Nonlinear structural dynamics; Reduced-order models; Aerospace Engineering; Mechanical Engineering;

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 10%
Top 10%