Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Resources Mana...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Resources Management
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Resources Management
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line

Authors: Modesto Pérez-Sánchez; P. Amparo López-Jiménez; Helena M. Ramos;

Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line

Abstract

[EN] The development of hydraulic and optimization models in water networks analyses to improve the sustainability and efficiency through the installation of micro or pico hydropower is swelling. Hydraulic machines involved in these models have to operate with different rotational speed, in order that in each instant to maximize the recovered energy.When the changes of rotational speed are determined using affinity laws, the errors can be significant. Detailed analyses are developed in this research through experimental tests to validate and propose new affinity laws in different reaction turbomachines. Once the errors have been analyzed, a methodology to modify the affinity laws is applied to radial and axial turbines. An empirical method to obtain the Best Efficiency Line (BEL) in proposed (i.e., based on all the Best Efficiency Points (BEPs) for different flows). When the experimental measurements and the calculated values by the empirical method are compared, the mean errors are reduced 81.81%, 50%, and 86.67% for flow, head, and efficiency parameters, respectively. The knowledge of BEL allows managers to define the operation rules to reach the BEP for each flow, improving the energy efficiency in the optimization strategies to be adopted. This research is supported by Program to support the academic career of the faculty of the Universitat Politecnica de Valencia 2015/2016 in the project "Methodology for Analysis of Improvement of Energy Efficiency in Irrigation Pressurized Network".

Keywords

Energy recovery, INGENIERIA HIDRAULICA, Best efficiency line (BEL), Variation operating strategies, Affinity laws

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 32
    download downloads 250
  • 32
    views
    250
    downloads
    Data sourceViewsDownloads
    RiuNet32250
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
25
Top 10%
Top 10%
Top 10%
32
250
Green
hybrid