Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao World Journal of Mic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
World Journal of Microbiology and Biotechnology
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prospects of integrating algae technologies into landfill leachate treatment

Authors: Ioannis Dogaris; Ehab Ammar; George P. Philippidis;

Prospects of integrating algae technologies into landfill leachate treatment

Abstract

Landfilling of municipal waste, an environmental challenge worldwide, results in the continuous formation of significant amounts of leachate, which poses a severe contamination threat to ground and surface water resources. Landfill leachate (LL) is generated by rainwater percolating through disposed waste materials and must be treated effectively before safe discharge into the environment. LL contains numerous pollutants and toxic substances, such as dissolved organic matter, inorganic chemicals, heavy metals, and anthropogenic organic compounds. Currently, LL treatment is carried out by a combination of physical, chemical, and microbial technologies. Microalgae are now viewed as a promising sustainable addition to the repertoire of technologies for treating LL. Photosynthetic algae have been shown to grow in LL under laboratory conditions, while some species have also been employed in larger-scale LL treatments. Treating leachate with algae can contribute to sustainable waste management at existing landfills by remediating low-quality water for recycling and reuse and generating large amounts of algal biomass for cost-effective manufacturing of biofuels and bioproducts. In this review, we will examine LL composition, traditional leachate treatment technologies, LL toxicity to algae, and the potential of employing algae at LL treatment facilities. Emphasis is placed on how algae can be integrated with existing technologies for biological treatment of LL, turning leachate from an environmental liability to an asset that can produce value-added biofuels and bioproducts for the bioeconomy.

Keywords

Biodegradation, Environmental, Waste Management, Microalgae, Biomass, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 1%
Top 10%
Top 1%