Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao World Journal of Mic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
World Journal of Microbiology and Biotechnology
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of different trophic conditions on total fatty acids, amino acids, pigment and gene expression profiles in Euglena gracilis

Authors: Wen Hui Zhang; Jin Wei Gao; Cher Chien Lau; Zhi Fei Jiang; Yik Sung Yeong; Wen Jye Mok; Wenli Zhou;

Effects of different trophic conditions on total fatty acids, amino acids, pigment and gene expression profiles in Euglena gracilis

Abstract

Euglena gracilis is a unique microalga that lacks a cell wall and is able to grow under different trophic culture conditions. In this study, cell growth, biomass production, and changes in the ultrastructure of E. gracilis cells cultivated photoautotrophically, mixotrophically, and under sequential-heterotrophy-photoinduction (SHP) were assessed. Mixotrophy induced the highest cell growth and biomass productivity (6.27 ± 0.59 mg/L/d) in E. gracilis, while the highest content of fatty acids, 2.69 ± 0.04% of dry cell weight (DCW) and amino acids, 38.16 ± 0.08% of DCW was obtained under SHP condition. E. gracilis also accumulated significantly higher saturated fatty acids and lower unsaturated fatty acids when cultivated under SHP condition. Transcriptomic analysis showed that the expression of photosynthetic genes (PsbA, PsbC, F-type ATPase alpha and beta) was lower, carbohydrate and protein synthetic genes (glnA, alg14 and fba) were expressed higher in SHP-culture cells when compared to other groups. Different trophic conditions also induced changes in the cell ultrastructure, where paramylon and starch granules were more abundant in SHP-cultured cells. The findings generated in this study illustrated that aerobic SHP cultivation of E. gracilis possesses great potential in human and animal feed applications.

Related Organizations
Keywords

Autotrophic Processes, Gene Expression Profiling, Fatty Acids, Microalgae, Euglena gracilis, Heterotrophic Processes, Biomass, Pigments, Biological, Amino Acids, Photosynthesis, Transcriptome, Glucans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research