
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Electromagnetic System for the Non-Contact Excitation of Bladed Disks

In this paper a non-contact excitation system based on electromagnets is described. The system aims at exciting cyclically symmetric structures like bladed disks by generating typical engine order-like travelling wave excitations that bladed disks encounter during service. Detailed description of the analytical formulation for the electromagnets sizing, quality assessment and practical implications of the final assembly for the bladed disk excitation are addressed. In particular, the paper proposes an original method to setup the excitation system in order to perform step-sine controlled force measurements. This feature is necessary when non-linear forced response must be measured on bladed disks in order to characterize the dynamic behaviour at different level of excitation. Typical applications of the designed excitation system are two: the first is the study of the effect of a force pattern characterized by a particular engine order on the forced response of mistuned bladed disks, the second is the characterization of intentional non-linear damping source occurring, for instance, for friction phenomena in presence of shrouds or underplatform dampers.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
