
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Synchronously enhancing biogas production, sludge reduction, biogas desulfurization, and digestate treatment in sludge anaerobic digestion by adding K2FeO4

pmid: 30328043
In order to enhance the efficiency and benefits of the sludge anaerobic digestion process, K2FeO4 was added to a sludge anaerobic digestion system, and its effects on the system were comprehensively investigated. Results showed that sludge anaerobic digestion was greatly improved by adding 500 mg/L K2FeO4. Biogas and methane productions were increased by 26.6 and 28.4%, respectively. Sludge reduction, protein removal, and the conversion efficiency of dissolved organics were all improved. The mechanism revealed that the disintegration of sludge flocs, enhancement of protease activity, and decrease of soluble sulfide toxicity on microorganisms contributed to biogas production and sludge reduction. Biogas quality was improved, benefitting from the decreasing H2S content in biogas; as additionally, the cost of biogas desulfuration was reduced. In the biogas slurry treatment, the PO43--P concentrations were decreased by 39%, which also reduced the cost of the dephosphorization processes at certain extent.
- Tsinghua University China (People's Republic of)
- North China University of Water Conservancy and Electric Power China (People's Republic of)
- North China University of Water Conservancy and Electric Power China (People's Republic of)
- Renmin University of China China (People's Republic of)
- Renmin University of China China (People's Republic of)
Sewage, Potassium Compounds, Waste Disposal, Fluid, Bioreactors, Biofuels, Anaerobiosis, Methane, Iron Compounds, Sulfur
Sewage, Potassium Compounds, Waste Disposal, Fluid, Bioreactors, Biofuels, Anaerobiosis, Methane, Iron Compounds, Sulfur
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
