Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science and Pollution Research
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-flocculation of enriched mixed microalgae culture in a sequencing batch reactor

Authors: Shanthini Gobi; Kanadasan Gobi; Keat Teong Lee; Vel Vadivelu;

Self-flocculation of enriched mixed microalgae culture in a sequencing batch reactor

Abstract

Microalgae-based biodiesel has gained widespread interest as an alternative energy source. Low-cost microalgae harvesting technologies are important for economically feasible biodiesel production. This study investigated, for the first time, the impact of adaptation period and height to diameter (H/D) ratio of a reactor on the growth and self-flocculation of microalgae, without the addition of bacteria. Six reactors were grouped into three sets of experiments, and each reactor was operated for 30 days at similar operating conditions (volume exchange ratio = 25% and settling time = 30 min). In set 1, two 8-L reactors, H5a (H/D ratio: 5) and H8a (H/D ratio: 8), were operated under batch operation. In set 2, reactors H5b and H8b were operated as sequential batch reactors (SBRs) without an adaptation period. In set 3, the reactors H5c and H8c were operated as SBRs with an adaptation period. The findings showed a threefold improvement in biomass productivity for the higher H/D ratio (H8c) and a reduction in biomass loss for microalgae. The H8c reactor exhibited 95% settling efficiency within 5 days, in comparison to 30 days for the H5c reactor. This study demonstrated that a higher H/D ratio and the introduction of an adaptation period in SBR operation positively influences growth and self-flocculation of enriched mixed microalgae culture.

Keywords

Bacteria, Flocculation, Bioreactors, Biofuels, Microalgae, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
bronze