
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Forecasting carbon emissions due to electricity power generation in Bahrain

Global warming and climate change have become one of the most embarrassing and explosive problems/challenges all over the world, especially in third-world countries. It is due to a rapid increase in industrialization and urbanization process that has given the boost to the volume of greenhouse gases (GHGs) emissions. In this regard, carbon dioxide (CO2) is considered a significant driver of GHGs and is the major contributing factor for global warming. Considering the goal of mitigating environmental pollution, this research has applied multiple methods such as neural network time series nonlinear autoregressive, Gaussian Process Regression, and Holt's methods for forecasting CO2 emission. It attempts to forecast the CO2 emission of Bahrain. These methods are evaluated for performance. The neural network model has the root mean square errors (RMSE) of merely 0.206, while the Gaussian Process Regression Rational Quadratic (GPR-RQ) Model has RMSE of 1.0171, and Holt's method has RMSE of 1.4096. Therefore, it can be concluded that the neural network time series nonlinear autoregressive model has performed better for forecasting the CO2 emission in the case of Bahrain.
- Bahrain Polytechnic Bahrain
- Government College University, Faisalabad Pakistan
- Wuhan University China (People's Republic of)
- Saudi Electronic University Saudi Arabia
- University of Bahrain Bahrain
Carbon Dioxide, Global Warming, Greenhouse Gases, Electricity, Bahrain, Research Article, Forecasting
Carbon Dioxide, Global Warming, Greenhouse Gases, Electricity, Bahrain, Research Article, Forecasting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).83 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
