Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INERIS: HAL (Institu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2021
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science and Pollution Research
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phytoextraction of Zn and Cd with Arabidopsis halleri: a focus on fertilization and biological amendment as a means of increasing biomass and Cd and Zn concentrations

Authors: Grignet, Arnaud; Sahraoui, Anissa Lounès-Hadj; Teillaud, Samuel; Papin, Arnaud; Bert, Valérie; Fontaine, Joel;

Phytoextraction of Zn and Cd with Arabidopsis halleri: a focus on fertilization and biological amendment as a means of increasing biomass and Cd and Zn concentrations

Abstract

The current work aims to investigate the influence of fertilization (fertilizer) and fungal inoculation (Funneliformis mosseae and Serendipita indica (formerly Piriformospora indica), respectively arbuscular mycorrhizal (AMF) and endophytic fungi) on the phytoextraction potential of Arabidopsis halleri (L.) O'Kane & Al-Shehbaz (biomass yield and/or aboveground part Zn and Cd concentrations) over one life plant cycle. The mycorrhizal rates of A. halleri were measured in situ while the fungal inoculation experiments were carried out under controlled conditions. For the first time, it is demonstrated that the fertilizer used on A. halleri increased its biomass not only at the rosette stage but also at the flowering and fruiting stages. Fertilizer reduced the Zn concentration variability between developmental stages and increased the Cd concentration at fruiting stage. A. halleri roots did not show AMF colonization at any stage in our field conditions, neither in the absence nor in the presence of fertilizer, thus suggesting that A. halleri is not naturally mycorrhizal. Induced mycorrhization agreed with this result. However, S. indica has been shown to successfully colonize A. halleri roots under controlled conditions. This study confirms the benefit of using fertilizer to increase the phytoextraction potential of A. halleri. Overall, these results contribute to the future applicability of A. halleri in a phytomanagement strategy by giving information on its cultural itinerary.

Country
France
Keywords

Arabidopsis halleri, [SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/Agronomy, Arabidopsis, Plant Roots, Cd, Fertilizer, Mycorrhizae, Mycorrhization, Zn, Soil Pollutants, Biomass, 580, [SDV.SA.AGRO] Life Sciences [q-bio]/Agricultural sciences/Agronomy, [SDE.IE]Environmental Sciences/Environmental Engineering, Phytoextraction, Zinc, Fertilization, [SDE.IE] Environmental Sciences/Environmental Engineering, Cadmium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green