Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science and Pollution Research
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clean cooking technologies, information, and communication technology and the environment

Authors: Isaac Sam Hayford; Elvis Kwame Ofori; Bright Akwasi Gyamfi; Justice Gyimah;

Clean cooking technologies, information, and communication technology and the environment

Abstract

In recent years, researchers and politicians have become concerned about the ever-increasing energy consumption of ICT gadgets. Any effort to reduce greenhouse gas emissions should take the ICT industry's carbon emissions into account, given the widespread usage of ICT products across all economic sectors. Employing Driscoll-Kraay Panel Corrected Estimators for E7 economies from 2000 to 2020, we examine the direct impacts of ICT on ecology as well as the indirect implications through connections with the availability of clean fuel and technology for cooking and trade while also adjusting for population and renewable energy. From the empirical findings, it was observed that the two proxies of ICT services (i.e., internet-penetration and mobile-subscriptions) were negatively significantly connected with E7's (Brazil, China, India, Indonesia, Mexico, Russia, and Turkey) carbon emissions. Similarly, access to clean fuel and technologies for cooking and renewable energy decreases emission levels within the E7 economies, while trade openness and population growth increase emission levels within the said economies. Moreover, the method of moment quantile regression used as a robustness check affirms the baseline technique. According to the findings, the E7 economies can safely boost internet usage and associated technologies to lower emissions. They may lessen their negative impact on the ecosystem by increasing the utilization of renewable energy and expanding access to clean fuel and cooking technologies.

Keywords

Communication, Economic Development, Cooking, Renewable Energy, Carbon Dioxide, Ecosystem, Carbon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Related to Research communities
Energy Research