
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Co-pyrolysis of refinery oil sludge with biomass and spent fluid catalytic cracking catalyst for resource recovery

pmid: 39136925
Catalytic co-pyrolysis of two different refinery oily sludge (ROS) samples was conducted to facilitate resource recovery. Non-catalytic pyrolysis in temperatures ranging from 500 to 600°C was performed to determine high oil yields. Higher temperatures enhanced the oil yields up to ~ 24 wt%, while char formation remained unchanged (~ 45%) for S1. Conversely, S2 exhibited a notably lower oil yield (~ 4 wt%) than S1. Pyrolysis oil of S1 consisted of phenolics (~ 50% at 600 °C) whereas hydrocarbons were predominant in S2 oil (~ 80% at 600 °C). Catalytic pyrolysis of S1 did not exhibit a substantial impact on oil yields but the oil composition varied significantly. High hydrocarbons, phenolics, and aromatics were obtained with molecular sieve (MS), metal slag, and ZSM-5, respectively. Catalytic co-pyrolysis of S2 with sawdust (SD) in the presence of MS enhanced the oil yield, and the resulting oil consisted of high hydrocarbons (~ 54%) and aromatics (~ 44%).
Petroleum, Sewage, Biomass, Catalysis, Pyrolysis, Hydrocarbons
Petroleum, Sewage, Biomass, Catalysis, Pyrolysis, Hydrocarbons
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
