
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cumulative energy demand in LCA: the energy harvested approach

Purpose: Environmental life cycle assessment (LCA) is today an important methodology to quantify the life cycle based environmental impacts of products, services or organisations. Since the very first LCA studies, the cumulative energy demand CED (also called ‘primary energy consumption’) has been one of the key indicators being addressed. Despite its popularity, there is no harmonised approach yet and the standards and guidelines define the cumulative energy demand differently. In this paper, an overview of existing and applied life cycle based energy indicators and a unifying approach to establish characterisation factors for the cumulative energy demand indicator are provided. The CED approaches are illustrated in a building’s LCA case study. Methods: The five approaches are classified into two main concepts, namely the energy harvested and the energy harvestable concepts. The two concepts differ by the conversion efficiency of the energy collecting facility. A unifying ‘energy harvested’ approach is proposed based on four theses, which ensure consistent accounting among renewable and non renewable energy resources. Results and discussion: The indicator proposed is compared to four other CED indicators, differing in the characterisation factors of fossil and biomass resources (upper or lower heating value), the characterisation factor of uranium and the characterisation factors of renewable energy resources (amount harvested or amount harvestable). The comparison of the five approaches is based on the cumulative energy demand of a newly constructed building of the city of Zürich covering the whole life cycle, including manufacturing and construction, replacement and use phase, and end of life. The cumulative energy demand of the life cycle of the building differs between 336 MJ oil-eq/m2a (‘CED uranium low’) and 836 MJ oil-eq/m2a (‘CED energy statistics’). The main differences occur in the use phase. The main reason for the large differences in the results are the different concepts to determine the characterisation factors for renewable and nuclear energy resources. Conclusions: The energy harvested approach ‘CED standard’ is a consistent approach, which quantifies the energy content of all different (renewable and non-renewable) energy resources. The ‘CED standard’ approach and the impact category indicator results computed with this approach reflect the safeguard subject ‘energy resources’ but not (no other) environmental impacts. The energy harvested approach proposed in this paper can readily be implemented in different contexts and applied to various data sets.
info:eu-repo/classification/ddc/330, 330, ddc:330, Economics, Characterisation factors, Life cycle assessment, Cumulative energy demand, Energy harvested, Impact category indicator, Life cycle impact assessment
info:eu-repo/classification/ddc/330, 330, ddc:330, Economics, Characterisation factors, Life cycle assessment, Cumulative energy demand, Energy harvested, Impact category indicator, Life cycle impact assessment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).288 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
