
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Plasmonic Coupling in Er3+:Au Tellurite Glass

handle: 11449/26132
Plasmonic Coupling in Er3+:Au Tellurite Glass
In this paper, we report on luminescence and absorbance effects of Er+3:Au-doped tellurite glasses synthesized by a melting-quenching and heat treatment technique. After annealing times of 2.5, 5.0, 7.5, and 10.0 h, at 300 °C, the gold nanoparticles (GNP) effects on the Er+3 are verified from luminescence spectra and the corresponding levels lifetime. The localized surface plasmon resonance around 800 nm produced a maximum fluorescence enhancement for the band ranging from 800 to 840 nm, corresponding to the transitions 4H11/2 → 4I13/2 (805 nm) and 4S3/2 → 4I13/2 (840 nm), with annealing time till 7.5 h. The measured lifetime of the levels 4H11/2 and 4S3/2 confirmed the lifetime reduction due to the energy transfer from the GNP to Er+3, causing an enhanced photon emission rate in these levels.
- Sao Paulo State University Brazil
Localized surface plasmon resonance, 530, Tellurite glass, Gold nanoparticles, Fluorescence enhancement
Localized surface plasmon resonance, 530, Tellurite glass, Gold nanoparticles, Fluorescence enhancement
2 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
