
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Humanitarian engineering at the sustainability-development nexus: mapping vulnerability and capability factors for communities at risk of water-based disasters

Access to resources that is equitable and sustainable provides a critical foundation for community harmony and development. Both natural and human-induced disasters present major risks to sustainable development trajectories and require strategic management within regional and local plans. Climate change and its impacts, including intensified storms, flash floods, and other water-based disasters (WD), also pose a serious and increasing threat. Small, remote communities prone to weather extremes are particularly vulnerable as they often lack effective early warning systems and experience energy insufficiency. Humanitarian engineering provides a transdisciplinary approach to these issues, supporting practical development resources such as renewable energy, which can also be adapted for disaster response. This study details an exploratory investigation of community vulnerability and capability mapping (VCM) that identifies communities with high WD risk and limited response capability which may benefit from risk reduction engagement and program co-development. By presenting criteria appropriate for VCM, we highlight the anthropocentric characteristics that could potentially be incorporated within community-led action as part of a comprehensive scheme that promotes sustainable development.
- University of Sydney Australia
- International Hellenic University Greece
- International Hellenic University Greece
- Western Sydney University Australia
- Western Sydney University Australia
Special Feature: Original Article
Special Feature: Original Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
