
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mesophilic and thermophilic dark fermentation course analysis using sensor matrices and chromatographic techniques

Production of biofuels from biomass is expected to benefit the society and the environment. At present, bio waste residues processing includes hydrolysis, dark fermentation, photofermentation, pyrolysis, gasification, and chemical synthesis. As the composition and the chemical structure of organic substances affect the efficiency of mentioned processes, it is believed that the glucose concentration is a crucial parameter for the evaluation of the efficiency of biological processes. Also, the control of by-products formulated during each stage of biomass processing affects the course of dark fermentation. Therefore, model processes regarding mesophilic and thermophilic dark fermentation were carried out. Glucose as a sole carbon source was applied as the fermentation broth and Faloye-pretreated activated municipal wastewater sludge was introduced as the source of sporulating microorganisms. Production of hydrogen and methane was controlled by means of sensor matrices. Obtained results are comparable to those obtained using the standard method based on gas chromatography and indicate the suitability of their application for online routine analyses of hydrogen and methane during fermentation processes. In addition, the fermentation broth was also examined by means of gas and liquid chromatography in the scope of glucose reduction, and generation of volatile fatty acids and phenols.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
