
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal dissociation kinetics of solid ammonium carbonate for use in NH3-SCR systems

AbstractSelective catalytic reduction (SCR) systems using solid ammonia carriers like carbamates, carbonates, etc., have gained interest in the recent past for NOx abatement from compression ignition engines. Solid ammonia carriers have successfully demonstrated their use in SCR systems. In this experimental study, the thermal dissociation study of ammonium carbonate is made using nonisothermal thermogravimetric analysis. Ammonium carbonate is subjected to three heating rates, $$\emptyset$$ ∅ of 2, 4, and 8 K/min. The corresponding highest rates of reaction are obtained at temperatures ($$T_{p}$$ T p ) of 96, 118, and 128 °C, respectively. At these points, the mass of the samples has been reduced to 1/3rd of the initial mass. From the Arrhenius plots, the average activation energy obtained is 77.39 kJ/mol which is 15% higher than that of ammonium carbamate. An expression for $$T_{p}$$ T p as a function of activation energy, $$\emptyset$$ ∅ , and order of the reaction is developed using kinetic model. The model can predict the temperatures at which the reaction rates are maximum for a given heating rate.
- Manipal University India
- Manipal University India
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
