
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Whey Treatment by AnSBBR with Circulation: Effects of Organic Loading, Shock Loads, and Alkalinity Supplementation

pmid: 18057453
The main objective of this work was to investigate the effect of volumetric loading rate (VLR), shock load, and alkalinity supplementation on the efficiency and stability of an Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR) containing polyurethane foam cubes. Mixing in the reactor, which was kept at 30 +/- 1 degrees C, occurred by recirculating the liquid phase. The reactor treated 2.5 l cheese whey in 8-h cycles, at concentrations of 1, 2, and 4 g COD l-1, which corresponded to VLRs of 3, 6, and 12 g COD l-1 day-1, respectively. Application of single-cycle shock loads of 6, 12, and 24 g COD l-1 day-1 did not impair reactor performance. In addition, for VLRs of 3, 6, and 12 g COD l-1 day-1, alkalinity supplementation to the influent, at the end of each assay, could be reduced to 75, 50, and 50%, respectively, in relation to supplementation at the beginning of the assay. During reactor operation a viscous polymer-like material was formed between the polyurethane foam cubes, which increased at higher VLR. Finally, addition of salts to the influent improved reactor efficiency.
- University of São Paulo Brazil
- Universidade de São Paulo Brazil
- Instituto Mauá de Tecnologia Brazil
- Instituto Mauá de Tecnologia Brazil
Industrial Waste, Alkalies, Hydrogen-Ion Concentration, Milk Proteins, Waste Disposal, Fluid, Kinetics, Bioreactors, Whey Proteins, Cheese, Biofilms, Food Industry, Anaerobiosis, Biomass, Methane
Industrial Waste, Alkalies, Hydrogen-Ion Concentration, Milk Proteins, Waste Disposal, Fluid, Kinetics, Bioreactors, Whey Proteins, Cheese, Biofilms, Food Industry, Anaerobiosis, Biomass, Methane
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
