
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Feasibility Study of Introducing Redox Property by Modification of PMBN Polymer for Biofuel Cell Applications

pmid: 19455430
In this study, the feasibility of introducing redox property to an amphiphilic phospholipid polymer (PMBN) was investigated. The active ester group in the side chain of the polymer was used to react with pyrroloquinoline quinine (PQQ). Redox peaks that corresponded to PQQ redox potentials were observed after the modification. Glucose oxidase was immobilized to the modified polymer. Electrochemical oxidation of glucose was carried out with the polymer electrode. The oxidation current increased with elevating glucose concentration indicating electron transfer established between the electrode and enzyme. It suggests that by modification, PMBN is possible to use for enzyme electrode for bioelectronics.
- University of Tokyo Japan
- Newcastle University United Kingdom
- University of Southampton United Kingdom
Bioelectric Energy Sources, PQQ Cofactor, Electrochemical Techniques, 540, Enzymes, Immobilized, 620, Polyethylene Glycols, Glucose Oxidase, Biofuels, Methacrylates, Oxidation-Reduction
Bioelectric Energy Sources, PQQ Cofactor, Electrochemical Techniques, 540, Enzymes, Immobilized, 620, Polyethylene Glycols, Glucose Oxidase, Biofuels, Methacrylates, Oxidation-Reduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
