
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Exploring the Bioelectrochemical Characteristics of Activated Sludge Using Cyclic Voltammetry

pmid: 28624996
Due to the potential interest, bioelectrochemical responses of activated sludge using the three-electrode system are tested. From the cyclic voltammograms, the oxidation current output is increasing due to incubation time increase, whereas 5, 25 and 39.33 μA are obtained after 3, 72 and 96 h, respectively. Changing the working electrode from glassy carbon to carbon paste led to the increase in the electrochemical signal from 0.3 to be 3.72 μA. On the other hand, the use of the lipophilic redox mediator (2,6-dichlorophenolindophenol (DCIP)) amplified the oxidation current to reach 19.9 μA instead of 2.1 μA. Based on these findings, the mixed microbial community of the activated sludge is exploited as a catalyst for the bio-oxidation of the degradable organic substrates, while DCIP is used as a mobile electron carrier from the intracellular matrix of the metabolically active cells to the carbon paste electrode which served as the final electron acceptor. Therefore, the extracellular electron transfer from the formed active biofilm at the electrode surface is assisted by the existence of DCIP.
- National Research Centre Egypt
Sewage, Bioelectric Energy Sources, Electrons, Electrochemical Techniques, 2,6-Dichloroindophenol, Oxidation-Reduction
Sewage, Bioelectric Energy Sources, Electrons, Electrochemical Techniques, 2,6-Dichloroindophenol, Oxidation-Reduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
