
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Conversion of Corn Stover for Microbial Enzymes Production by Phanerochaete chrysosporium
pmid: 38117456
Phanerochaete chrysosporium, a white rot fungus, exhibits remarkable capabilities in producing various extracellular enzymes. These microbial enzymes find extensive applications in disrupting the intricate structure of plant cell walls, decolorizing synthetic dyes, and facilitating pulp extraction, among other functions. The process of solid-state fermentation stands out as an economical and sustainable approach, ideal for achieving high yields in enzyme production using lignocellulosic biomass as a substrate. In this research paper, both untreated and alkali pretreated corn stover materials served as substrates for enzyme production, leveraging the fungal strain's capacity to generate enzymes like cellulases and manganese peroxidase. The maximum production of endoglucanase was notably observed, reaching 121.21 ± 0.90 U/gds on the 9th day for untreated biomass and 79.75 ± 0.57 U/gds on the 6th day for treated biomass. Similarly, the peak exoglucanase production was recorded at 2.46 ± 0.008 FPU/ml on the 3rd day for untreated biomass and 0.92 ± 0.002 FPU/ml on the 6th day for treated biomass. Furthermore, the highest production of manganese peroxidase was achieved, with values of 5076.81 U/l on the 6th day for untreated biomass and 1127.58 ± 0.23 U/l on the 3rd day for treated biomass. These results collectively emphasize the potential of corn stover as a renewable and promising substrate for the production of essential enzymes.
Fungal Proteins, Peroxidases, Cellulase, Fermentation, Biomass, Phanerochaete, Zea mays, Lignin
Fungal Proteins, Peroxidases, Cellulase, Fermentation, Biomass, Phanerochaete, Zea mays, Lignin
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
