Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEnergy Research
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fuel Characteristics of Solid Biofuel Derived from Oil Palm Biomass and Fast Growing Timber Species in Malaysia

Authors: Beng Ti Tey; Kit Ling Chin; Mariusz Mamiński; M. J. Chin; Md. Tahir Paridah; E. W. Chai; Paik San H'ng; +1 Authors

Fuel Characteristics of Solid Biofuel Derived from Oil Palm Biomass and Fast Growing Timber Species in Malaysia

Abstract

The fuel characteristics of solid biofuels derived from biomass that is abundantly available in Malaysia are presented. The objectives of the study were to characterize fuel properties of oil palm biomass (empty fruit bunch (EFB) and oil palm trunk (OPT)) and wood from a range of fast growing timber species (Albizia falcataria, Acacia spp., Endospermum spp. and Macaranga spp.), inclusive and exclusive of bark. Among the fast-growing timber species, the higher heating values ranged from 4288 cal g-1 to 4383 cal g-1 for wood inclusive of bark, and 4134 cal g-1 to 4343 cal g-1 for wood exclusive of bark. The inclusive of bark portion in the biomass sample generally increased the heating value except for Macaranga spp. Empty fruit bunch and oil palm trunk had heating values of 4315 cal g-1 and 4104 cal g-1, respectively. Ash-forming elements and trace elements were much higher in the timber species samples inclusive of bark than samples exclusive of bark. On the other hand, oil palm biomass contained higher ash-forming elements and trace elements than the wood from the fast growing timber species. The European energy crops show higher HHV, Cl and Si content but lower K, Mg, Na and P compared to the local biomass used in this study. The data obtained from this study can serve as a foundation for the selection of suitable biomass to be used as solid fuel, or as a reference on the fabrication of conversion systems for the selection of biomass solid fuel.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%