
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Rapid Lipid Induction in Chlorella sp. by UV-C Radiation

Rapid induction of lipid accumulation in microalgae is an important prerequisite towards the use of microalgae as a feedstock for biodiesel production. In this study, we present a novel approach to induce lipids in Chlorella sp. within 24 h by short-term UV-C radiation (UVR) stress at different energy intensities ranging from 0 to 1000 mJ/cm2. Increase in the lipid fluorescence was measured by Nile red staining and fluorescence-activated cell sorting analysis followed by gas chromatography-mass spectrometry. Lipid fluorescence was significantly increased in cultures radiated at or above 250 mJ/cm2 compared to the mock-treated control cultures. Lower dosages at 100 and 250 mJ/cm2 led to a near doubling of total fatty acids, with a significant increase in unsaturated fatty acids and also most saturated fatty acids. This study provides a protocol for rapid lipid induction of microalgal cells by UV-C and the possible impact of UV-C radiation on fatty acid metabolism.
- University of Queensland Australia
- University of Queensland Australia
- University of Queensland Australia
571, Sustainability and the Environment, Chlorella, Lipids, 2105 Renewable Energy, 2101 Energy (miscellaneous), Microalgae, UV-C, 1102 Agronomy and Crop Science, PUFA
571, Sustainability and the Environment, Chlorella, Lipids, 2105 Renewable Energy, 2101 Energy (miscellaneous), Microalgae, UV-C, 1102 Agronomy and Crop Science, PUFA
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
