Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEnergy Research
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rapid Lipid Induction in Chlorella sp. by UV-C Radiation

Authors: Sharma, Kalpesh K.; Li, Yan; Schenk, Peer M.;

Rapid Lipid Induction in Chlorella sp. by UV-C Radiation

Abstract

Rapid induction of lipid accumulation in microalgae is an important prerequisite towards the use of microalgae as a feedstock for biodiesel production. In this study, we present a novel approach to induce lipids in Chlorella sp. within 24 h by short-term UV-C radiation (UVR) stress at different energy intensities ranging from 0 to 1000 mJ/cm2. Increase in the lipid fluorescence was measured by Nile red staining and fluorescence-activated cell sorting analysis followed by gas chromatography-mass spectrometry. Lipid fluorescence was significantly increased in cultures radiated at or above 250 mJ/cm2 compared to the mock-treated control cultures. Lower dosages at 100 and 250 mJ/cm2 led to a near doubling of total fatty acids, with a significant increase in unsaturated fatty acids and also most saturated fatty acids. This study provides a protocol for rapid lipid induction of microalgal cells by UV-C and the possible impact of UV-C radiation on fatty acid metabolism.

Country
Australia
Keywords

571, Sustainability and the Environment, Chlorella, Lipids, 2105 Renewable Energy, 2101 Energy (miscellaneous), Microalgae, UV-C, 1102 Agronomy and Crop Science, PUFA

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Average
Related to Research communities
Energy Research