Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Strathprintsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEnergy Research
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://dx.doi.org/10.17868/st...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-objective Optimization of Pelletized Coffee Silver Skin in Flue Gas Torrefaction for Producing Premium Solid Fuel

Authors: Manatura, Kanit; Klinkesorn, Supaporn; Chalermsinsuwan, Benjapon; Samsalee, Namfon; Wongrerkdee, Sutthipoj; Jaojaruek, Kitipong; Pattiya, Adisak; +1 Authors

Multi-objective Optimization of Pelletized Coffee Silver Skin in Flue Gas Torrefaction for Producing Premium Solid Fuel

Abstract

Coffee silver skin, an organic residue from coffee production, demonstrates low solid fuel characteristics such as low bulk density and heating value, necessitating enhancements for solid fuel applications. Torrefaction in a flue gas environment (5% O2, 15% CO2, and a balance of N2, v/v) is more energy-efficient than inert torrefaction, using recovered flue gas to improve fuel quality and process efficiency. Three input factors were assessed: temperature (200, 250, and 300 °C), residence time (30, 45, and 60 min), and gas media (N2 and flue gas). Four performance metrics were evaluated: energy yield, upgrading energy index, specific energy consumption, and energy-mass co-benefit. Temperature significantly influenced most outcomes, except for energy-mass co-benefit, which was medium-dependent. Optimal torrefaction conditions achieving maximum energy yield (71.48%) and energy-mass co-benefit (5.30%) were identified at 200 °C for 30 min with flue gas. The torrefied material’s properties include moisture content, volatile matter, fixed carbon, and ash content of 3.03%, 69.24%, 27.04%, and 1.01%, respectively. Furthermore, the hydrophobicity of pelletized coffee silver skin notably increased under flue gas conditions, evident by a contact angle greater than 100°, indicating that flue gas torrefaction is a feasible approach for producing high-grade solid fuel.

Country
United Kingdom
Keywords

Chemical engineering, 333, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research