Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Mechanica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Mechanical Science and Technology
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two-shaft stationary gas turbine engine gas path diagnostics using fuzzy logic

Authors: B. T. Aklilu; Syed Ihtsham-ul-Haq Gilani; F. D. Amare; A. Mojahid;

Two-shaft stationary gas turbine engine gas path diagnostics using fuzzy logic

Abstract

Our objective was to develop a Fuzzy logic (FL) based industrial two-shaft gas turbine gas path diagnostic method based on gas path measurement deviations. Unlike most of the available FL based diagnostic techniques, the proposed method focused on a quantitative analysis of both single and multiple component faults. The data required to demonstrate and verify the method was generated from a simulation program, tuned to represent a GE LM2500 engine running at an existing oil & gas plant, taking into account the two most common engine degradation causes, fouling and erosion. Gaussian noise is superimposed into the data to account measurement uncertainty. Finally, the fault isolation and quantification effectiveness of the proposed method was tested for single, double and triple component fault scenarios. The test results show that the implanted single, double and triple component fault case patterns are isolated with an average success rate of 96 %, 92 % and 89 % and quantified with an average accuracy of 83 %, 80 % and 78.5 %, respectively.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%