Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Building Simulation
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A data analytics-based tool for the detection and diagnosis of anomalous daily energy patterns in buildings

Authors: Silvio Brandi; Fu Xiao; Marco Savino Piscitelli; Marco Savino Piscitelli; Alfonso Capozzoli;

A data analytics-based tool for the detection and diagnosis of anomalous daily energy patterns in buildings

Abstract

In this paper, a tool for the detection and diagnosis of anomalous electrical daily energy patterns relative to a transformer substation of a university campus was developed and tested. Through an innovative pattern recognition analysis consisting in a multi-step clustering process, six clusters of anomalous daily load profiles were identified and isolated in two-year historical data of total electrical energy consumption. The infrequent electrical load profiles were found to be strongly affected, in terms of both shape and magnitude, by the energy consumption behaviour related to the heating/cooling mechanical room. Then, a fault-free predictive model, which uses artificial neural network (ANN) in combination with a Regression Tree, was developed to detect anomalous trends of the electrical energy consumption. The model was able to detect the 93.7% of the anomalous profiles and only the 5% of fault-free days were wrongly predicted as anomalous. Eventually, a diagnosis phase was conceived and validated with a testing data set. A number of daily abnormal load profiles were detected and compared with the centroids of the anomalous clusters identified in the pattern-recognition stage. The work led to the development of a flexible intelligent tool useful for operating a continuous commissioning of the campus facilities.

Countries
Hong Kong, China (People's Republic of), China (People's Republic of), Italy, Hong Kong
Keywords

Data analytics, Pattern recognition, Energy management, Anomaly detection, anomaly detection; data analytics; energy management; pattern recognition; prediction models, Prediction models

Powered by OpenAIRE graph
Found an issue? Give us feedback