
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Electrocatalysts in lithium-sulfur batteries

Lithium-sulfur (Li-S) batteries with the merits of high theoretical capacity and high energy density have gained significant attention as the next-generation energy storage devices. Unfortunately, the main pressing issues of sluggish reaction kinetics and severe shuttling of polysulfides hampered their practical application. To overcome these obstacles, various strategies adopting high-efficient electrocatalysts have been explored to enable the rapid polysulfide conversions and thereby suppressing the polysulfide shuttling. This review first summarizes the recent progress on electrocatalysts involved in hosts, interlayers, and protective layers. Then, these electrocatalysts in Li-S batteries are analyzed by listing representative works, from the viewpoints of design concepts, engineering strategies, working principles, and electrochemical performance. Finally, the remaining issues/challenges and future perspectives facing electrocatalysts are given and discussed. This review may provide new guidance for the future construction of electrocatalysts and their further utilizations in high-performance Li-S batteries. [Figure not available: see fulltext.]. © 2022, Tsinghua University Press.
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- Shanghai Jiao Tong University China (People's Republic of)
- Hong Kong Polytechnic University China (People's Republic of)
- Anhui University of Technology China (People's Republic of)
690, Electrocatalysts, Lithium-sulfur batteries, Slow reaction kinetics, Polysulfide shuttling, Electrochemical energy storage
690, Electrocatalysts, Lithium-sulfur batteries, Slow reaction kinetics, Polysulfide shuttling, Electrochemical energy storage
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).58 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
