Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Waste and Biomass Va...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Waste and Biomass Valorization
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrated Thermal Conversion and Anaerobic Digestion for Sludge Management in Wastewater Treatment Plants

Authors: Karla Dussan; Rory F. D. Monaghan;

Integrated Thermal Conversion and Anaerobic Digestion for Sludge Management in Wastewater Treatment Plants

Abstract

This study presented a techno-economic evaluation of the thermal conversion of sludge and digestate integrated with anaerobic digestion (AD) as a means of waste volume reduction, carbon emissions mitigation and energy recovery in wastewater treatment plants. The study was supported by empirical data and thermodynamic modelling of processes involved in sludge conversion. A gasification plant (6 MWel) with combustion engines produced sufficient power for treating wastewater (1.6 Mp.e.) and 130 tpd dry sludge. The integration of AD with gasification increased total energy coverage by up to 46%. Treatment costs between €132 and 210 dry t−1 were achieved and the associated levelised costs of electricity (23–85c kWh−1) were within the cost range known for biomass digestion and other CHP technologies. Biomass and waste co-processing was evaluated in order to avoid heat and electricity deficits due to variations in sludge availability and properties, showing potential for reducing carbon footprint and associated electricity costs.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
bronze