Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Nanosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Nanoscience
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Blends of scum oil methyl ester, alcohols, silver nanoparticles and the operating conditions affecting the diesel engine performance and emission: an optimization study using Dragon fly algorithm

Authors: Asif Afzal; Ümit Ağbulut; Manzoore Elahi M. Soudagar; R. K. Abdul Razak; Abdulrajak Buradi; C. Ahamed Saleel;

Blends of scum oil methyl ester, alcohols, silver nanoparticles and the operating conditions affecting the diesel engine performance and emission: an optimization study using Dragon fly algorithm

Abstract

The effect of the addition of different proportions of silver (Ag) nanoparticles and alcohols in milk scum oil methyl ester on the performance of engine and emission are studied. B20 blend is added with 5% of ethanol, n-butanol, and iso-butanol as ternary additives for the experimental analysis from no load to full load. Furthermore, at a fixed load, operating conditions such as injection pressure (12 and 15 bar) and injection timing (23° and 26°) are varied without and with the addition of 0.8 vol% of Ag (silver) nanoparticles to the fuel blends. Also, the concentrations of Ag nanoparticles are increased from 0.2 to 1 vol% and comparisons are made with diesel and B60 blend. Mathematical models are developed for selected features of engine performance which fits with the experimental values for the purpose of optimization using the Dragon fly algorithm (DA) by considering these models as the objective functions. The concentration of nanoparticles lowers the BSFC significantly and helps in reducing the emission with an increased percentage. Using full biodiesel, 16.6% reduction in BTE was obtained, while use of alcohols prevented this reduction approximately by 5%. A highest of 4.6% improvement was obtained with the addition of Ag nanoparticles. 4.5% reduction in HC and 13% in NOx emission using nanoparticles are obtained. The DA algorithm provided the same optimized value at the end of 30 iterations in different cycles of execution. Nanoparticle addition and use of pressure in the range of 20 bar gives the lowest emission from the engine.

Country
Turkey
Keywords

Fossil-Fuels, Additives, Oxide, Combustion, Injection pressure, Exhaust Emissions, Emission, Alcohols, Engine performance, N-Butanol, Nanoparticles, Biodiesel

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
gold