
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Kinetic modelling for thermal decomposition of agricultural residues at different heating rates

The purpose of this work was to establish the pyrolysis kinetics of agricultural biomass residues (mustard husk (MH), cotton stalk (CS), and groundnut shell (GNS)) using thermogravimetric analysis (TGA). TGA is carried out at different heating rates (5, 10, 30, and 50 K/min) under inert conditions in the temperature range of 303–1173 K. The iso-conversional methods of Friedman, Kissinger-Akahira-Sunose, and Flynn-Wall-Ozawa were used to estimate the activation energy of the decomposition process. The Criado method, Coats-Redfern Method, and Direct Differential methods were used to model the kinetics, with the latter two methods providing a closer fit with the experimental data. The kinetics of thermal degradation were separately studied for three temperature zones represented as drying, active, and passive zones. The results of Coats-Redfern and Direct Differential methods showed that (i) the nth-order reaction model is applicable for all the samples with order of reaction in the active zone being around ~ 2.0–3.0, ~ 2.5–3.0, and ~ 3.0 for MH, CS, and GNS, respectively, and (ii) the D-3 model is applicable for all the samples in the passive zone.
- THE MANIPAL UNIVERSITY JAIPUR India
- THE MANIPAL UNIVERSITY JAIPUR India
- Institute of Chemical Technology India
- University of Sydney Australia
- Institute of Chemical Technology India
630
630
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
