Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Korea...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the Korean Physical Society
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Etching characteristics of NF3 and F3NO at reactive ion etching plasma for silicon oxide and silicon nitride

Authors: Yeon Soo Park; In Young Bang; Yongjun Cho; Min Ho Kang; Jung Hun Kwak; Gi Won Shin; Hee Tae Kwon; +4 Authors

Etching characteristics of NF3 and F3NO at reactive ion etching plasma for silicon oxide and silicon nitride

Abstract

Reactive ion etching of silicon oxide and silicon nitride was conducted by the injection of nitrogen trifluoride (NF3) and nitrogen oxide trifluoride gas (F3NO). The etching process was studied using a residual gas analyzer (RGA) and optical emission spectroscopy (OES); this included confirming and comparing the characteristics of the F3NO plasma to that of the NF3 plasma by discharging and measuring the pure NF3 plasma and F3NO plasma. Furthermore, silicon oxide and silicon nitride etching were performed using a process gas (NF3, F3NO) and an argon mixture. The plasma etching process was similarly diagnosed by RGA and OES, and the etch rate was calculated by measuring the reflection. The etch rate of silicon oxide during F3NO/Ar plasma etching is approximately 94% of that for NF3/Ar plasma etching and the etch rate of silicon nitride is approximately 76% of that for NF3/Ar plasma etching under the same conditions. The RGA and OES measurements confirmed that more O+, NO+, and O2+ ions were generated in the F3NO plasma than in the NF3 plasma. This difference makes it possible to confirm the variation in etch rates between silicon oxide and silicon nitride.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average