Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Brazi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the Brazilian Society of Mechanical Sciences and Engineering
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving the combustion process of a homogeneous charge compression ignition engine running with triple fuel blend using response surface methodology

Authors: Seyed Mohammad Safieddin Ardebili; Alper Calam; Hamit Solmaz; Ahmet Böğrek; Can Haşimoğlu;

Improving the combustion process of a homogeneous charge compression ignition engine running with triple fuel blend using response surface methodology

Abstract

In the present study, performance of an HCCI engine powered with ethanol/toluene/n-heptane tri-fuel blend was optimized by using response surface method. The studied independent parameters were engine speed, lambda ratio, and fuel blends. The impact of these parameters on engine torque, COVimep, CA10, CA50, indicated thermal efficiency, IMEP along with emissions of NOX, CO, and HC comprehensively investigated. According to the results, the optimal HCCI engine operation condition was proposed as engine speed of 1343 rpm, lambda value of 2.29, and ethanol ratio of 22%. At this condition, the engine outputs, i.e., IMEP, COVimep, indicated thermal efficiency, CA10, and CA50, engine torque were estimated to be 4.21 bar, 4.28%, 0.37, 1.41 °CA, 4.62 °CA, and 8.2 Nm, respectively. The engine-out emissions, including HC, NOX, and CO emission, were predicted to be 243 ppm, 1.05 ppm, and 0.03%, respectively. The result indicates that using ethanol/toluene/n-heptane fuel mixture improved the HCCI combustion and NOX emission. The near-zero NOX emissions were recorded at all fuel mixture. However, enhancing ethanol ratio in the fuel blends showed an increase in CO and HC emissions. Overall, this study showed that response surface technique could be used as a promising method to model the HCCI engines.

Country
Turkey
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 16
    download downloads 21
  • 16
    views
    21
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Average
Average
Average
16
21