
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Unified optimal power flow model for AC/DC grids integrated with natural gas systems considering gas-supply uncertainties

Abstract A unified optimal power flow (OPF) model for AC/DC grids integrated with natural gas systems is proposed for the real-time scheduling of power systems. Herein, the primary physical couplings underlying this coordinated system are modeled and investigated. In addition, the uncertainties of gas loads are considered when studying the role of gas supply for gas-fired units in power system operations. The nonlinear gas system constraints are converted to the second-order cone forms that allow for the use of the Benders decomposition techniques and the interior-point method to obtain the optimal solution. The numerical results of the modified IEEE 118-bus test system that integrates the Belgium 20-node natural gas system demonstrate the effectiveness of the proposed model. The effects of gas demand uncertainties on the optimal schedule of thermal generators are investigated as well.
- Southeast University China (People's Republic of)
- Southeast University China (People's Republic of)
- Virginia Tech United States
- Southwest Jiaotong University China (People's Republic of)
Second-order cone programming, TK1001-1841, Production of electric energy or power. Powerplants. Central stations, Benders decomposition, Natural gas system, AC/DC optimal power flow (OPF), TJ807-830, Renewable energy sources
Second-order cone programming, TK1001-1841, Production of electric energy or power. Powerplants. Central stations, Benders decomposition, Natural gas system, AC/DC optimal power flow (OPF), TJ807-830, Renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
