Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Carbon Neutralityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carbon Neutrality
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carbon Neutrality
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

Personal GHG emissions accounting and the driving forces decomposition in the past 10 years

Authors: Yuxiao Zhou; Jiyang Li; Jicui Cui; Hui Wang; Chuan Wang; Ruina Zhang; Ying Zhu; +2 Authors

Personal GHG emissions accounting and the driving forces decomposition in the past 10 years

Abstract

AbstractPersonal greenhouse gas (PGHG) emissions were crucial for achieving carbon peak and neutrality targets. The accounting methodology and driving forces identification of PGHG emissions were helpful for the quantification and the reduction of the PGHG emissions. In this study, the methodology of PGHG emissions was developed from resource obtaining to waste disposal, and the variations of Shanghainese PGHG emissions from 2010 to 2020 were evaluated, with the driving forces analysis based on Logarithmic Mean Divisia Index (LMDI) model. It showed that the emissions decreased from 3796.05 (2010) to 3046.87 kg carbon dioxides (CO2) (2014) and then increased to 3411.35 kg CO2 (2018). The emissions from consumptions accounted for around 62.1% of the total emissions, and that from waste disposal were around 3.1%, which were neglected in most previous studies. The PGHG emissions decreased by around 0.53 kg CO2 (2019) and 405.86 kg CO2 (2020) compared to 2018 and 2019, respectively, which were mainly affected by the waste forced source separation policy and the COVID-19 pandemic. The income level and consumption GHG intensity were two key factors influencing the contractively of GHG emissions from consumption, with the contributing rate of 169.3% and − 188.1%, respectively. Energy consumption was the main factor contributing to the growth of the direct GHG emissions (296.4%), and the energy GHG emission factor was the main factor in suppressing it (− 92.2%). Green consumption, low carbon lifestyles, green levy programs, and energy structure optimization were suggested to reduce the PGHG emissions.

Related Organizations
Keywords

Personal GHG emissions, TJ807-830, Driving forces, Consumer lifestyle approach, Waste disposal, Energy industries. Energy policy. Fuel trade, Renewable energy sources, HD9502-9502.5, LMDI

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold