
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Moderate active Fe3+ doping enables improved cationic and anionic redox reactions for wide-voltage-range sodium storage

AbstractLayered metal oxides are promising cathode materials for sodium-ion batteries (SIBs) due to their high theoretical specific capacity and wide Na+ diffusion channels. However, the irreversible phase transitions and cationic/anionic redoxes cause fast capacity decay. Herein, P2-type Na0.67Mg0.1Mn0.8Fe0.1O2 (NMMF-1) cathode material with moderate active Fe3+ doping has been designed for sodium storage. Uneven Mn3+/Mn4+distribution is observed in NMMF-1 and the introduction of Fe3+ is beneficial for reducing the Mn3+ contents both at the surface and in the bulk to alleviate the Jahn–Teller effect. The moderate Fe3+/Fe4+ redox can realize the best tradeoff between capacity and cyclability. Therefore, the NMMF-1 demonstrates a high capacity (174.7 mAh g−1 at 20 mA g−1) and improved cyclability (78.5% over 100 cycles) in a wide-voltage range of 1.5–4.5 V (vs. Na+/Na). In-situ X-ray diffraction reveals a complete solid-solution reaction with a small volume change of 1.7% during charge/discharge processes and the charge compensation is disclosed in detail. This study will provide new insights into designing high-capacity and stable layered oxide cathode materials for SIBs.
- Wuhan University of Technology China (People's Republic of)
- Wuhan Polytechnic University China (People's Republic of)
- Argonne National Laboratory United States
Solid solution reaction, TJ807-830, Fe-doping, Energy industries. Energy policy. Fuel trade, Renewable energy sources, Wide-voltage-range, HD9502-9502.5, Layered oxide, Sodium-ion batteries
Solid solution reaction, TJ807-830, Fe-doping, Energy industries. Energy policy. Fuel trade, Renewable energy sources, Wide-voltage-range, HD9502-9502.5, Layered oxide, Sodium-ion batteries
