Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 1995 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Liquefaction of Black Thunder coal. 1. Petrographic examination of residues

Authors: Richard J. Parker; Peter L. Simpson; Thomas Gentzis;

Liquefaction of Black Thunder coal. 1. Petrographic examination of residues

Abstract

Abstract Residues from the liquefaction of Black Thunder subbituminous and Illinois No. 6 bituminous coals in an autoclave and a bench unit were examined petrographically. Optical microscopy proved valuable for ranking the samples on the basis of overall coal conversion and presence of vitroplast, granular residue and inertinite. It was observed that in the autoclave that runs on Black Thunder coal, K 2 CO 3 was a superior water gas shift reaction catalyst to NaAlO 2 , or a combination of CS 2 and Fe or Mo catalysts. The amount of vitroplast showing vacuoles and cenospheric morphology in the residues was inversely related to the CO conversion, indicating that the mechanism of vitroplast dissolution is linked to the availability of active CO intermediates (e.g. formate ion, HCOO − ). A CO-steam mixture was more effective than syngas or pure H 2 and N 2 in increasing Black Thunder coal conversion, and resulted in greater morphological changes to the coal particles. In contrast, for Illinois No. 6 coal pure H 2 had a greater effect on coal solubilization and overall conversion than pure CO at the same temperature; this was attributed to the absence of carboxylates to react with the formate ions. Higher mesophase and coke contents were detected in some bench unit runs on Black Thunder coal that were operated in counterflow mode. Higher severity, poorer mixing, longer residence time and a reduction in pressure by almost 3.5 MPa are believed to be responsible for the retrogressive reactions forming mesospheres in these cases.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average