Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials
Article . 1989 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrodeposition of CuInSe2 thin films from aqueous solution

Authors: R.D.L. Kristensen; S.N. Sahu; D. Haneman;

Electrodeposition of CuInSe2 thin films from aqueous solution

Abstract

CuInSe2 thin films were cathodically electrodeposited on conducting substrates from aqueous solutions containing CuCl, InCl3 and SeO2. Structural characterization were carried out by microprobe, X-ray diffraction and electron microscopy studies. The presence of chalcopyrite phase CuInSe2 was confirmed from X-ray studies. Optical absorption studies indicated band gap values of about 1.1 eV. Electrical characterization was carried out by Hall effect and resistivity studies. The room temperature resistivity and mobility were found to be 2.15×10−3 ω cm and 8.1 cm2 V−1s−1 respectively for p-type films. Diffusion of In into p-type films converted them to n-type. Photovoltaic and photoelectrochemical solar cells were fabricated with Mo/p-CuInSe2/CdS/Au and Mo/n-CuInSe2/I1−I3−/C configurations. The open circuit photovoltage and short circuit current densities were 188 mV and 0.056 mA cm−2 for photovoltaic cells and 172 mV and 2.75 mA cm−2 for photoelectrochemical cells under 100 mW cm−2 intensity of illumination, without optimisation.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Average
Top 10%
Top 10%
Related to Research communities
Energy Research