Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuroscience Lettersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience Letters
Article . 1995 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The role of acetate as a potential mediator of the effects of ethanol in the brain

Authors: Thomas V. Dunwiddie; Thomas V. Dunwiddie; James M. Brundege;

The role of acetate as a potential mediator of the effects of ethanol in the brain

Abstract

Acetate is the primary product of ethanol catabolism and can accumulate in the blood at concentrations of up to 2 mM following ethanol consumption. It has been suggested that some of the pharmacological actions of ethanol are mediated via acetate, which can lead indirectly to the release of endogenous adenosine. In the present experiments this hypothesis was tested by examining the effects of exogenous sodium acetate on the physiology of hippocampal slices from rat brain. Acetate had no significant effect on intracellular responses recorded from CA1 pyramidal neurons or on extracellular field potentials evoked from the either the CA1 region or the dentate gyrus. There was also no significant difference in responses to the adenosine receptor antagonist theophylline in CA1 pyramidal neurons recorded using intracellular filling solutions containing potassium acetate, KCl, or potassium methylsulfate. These results suggest that the presence of acetate, either in the extracellular medium or within an intracellular electrode, does not induce a significant increase in adenosine receptor activation in the hippocampus.

Keywords

Male, Adenosine, Ethanol, Pyramidal Cells, Receptors, Purinergic P1, Brain, Acetates, In Vitro Techniques, Hippocampus, Rats, Rats, Sprague-Dawley, Theophylline, Animals, Evoked Potentials, Ion-Selective Electrodes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average