Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of Nuclear En...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Nuclear Energy
Article . 1994 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Large-break loss-of-collant accident analysis of a direct-cycle supercritical-pressure light water reactor

Authors: K. Shimamura; Yoshiaki Oka; S. Koshizuka;

Large-break loss-of-collant accident analysis of a direct-cycle supercritical-pressure light water reactor

Abstract

Abstract Large-break loss-of-coolant accident (LOCA) was analyzed in the course of the design study concerning direct-cycle supercritical-pressure light water reactor (SCLWR). The advantages of SCLWR are a higher thermal efficiency and simpler reactor system than the current light water reactors (LWRs). A computer code was prepared for the analysis of the blowdown phase from the supercritical pressure. The calculation was connected to the REFLA-TRAC code when the system pressure decreased to around atmospheric pressure. The analyzed accidents are 100, 75, 50 and 25% cold-leg and 100% hot-leg breaks. First, blowdown and heatup phases without an emergency core cooling system (ECCS) were evaluated. A low-pressure coolant injection system (LPCI) was designed to fill the core with water before the cladding (stainless-steel) temperature reached a limit of 1260°C. The LPCI consists of four units, each of which has the capacity 805 kg/s. An automatic depressurization system (ADS) was designed to release the steam generated in the core in the case of cold-leg breaks and to permit operation of LPCI in the case of LOCAs of less than 100% break. For all cases analyzed, the peak cladding temperatures were lower than the limit when the designed ECCS is implemented.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Top 1%
Top 10%