Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 1994 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effect of air cells and mortar joints on the thermal resistance of concrete masonry walls

Authors: Kris S. Murali; Ossama A. Abdou;

The effect of air cells and mortar joints on the thermal resistance of concrete masonry walls

Abstract

Abstract A testing program to investigate the thermal performance of concrete masonry wall assemblies has been developed and completed. The intent was to study the thermal contribution of both the air cells contained in concrete masonry blocks and the mortar joints holding the unit blocks together. This was accomplished by testing three individual walls. The first constituted a 6-in (0.15 m) conventional concrete masonry wall. This wall acted as the control specimen with which the other walls were compared. In the second wall, the mortar was eliminated and replaced by an adhesive. This allowed the measurement of the contribution of the mortar to the thermal resistance of the conventional prototype wall. In the third wall the air cells (along with the mortar joints) were eliminated to study the effect of the air cells on the thermal resistance of the conventional wall assembly. A temperature-controlled test plate, calibrated with fibrous glass board material of known thermal conductivity was used with heat flow sensors to determine periodically the thermal resistances of the test walls. Results indicated that the R-value of the 6-in conventional concrete masonry wall (including mortar joints) measured 2.05 (hr ft2 °F)/Btu. However, in the absence of mortar joints, the thermal resistance of the concrete masonry wall assembly decreased by approximately 8%. Thermal resistance of concrete masonry walls in which the air cells were eliminated was approximately 25% less than the conventional prototype wall, and 18% lower than the mortarless wall. This indicates that the air cells in the concrete blocks contribute significantly to the thermal resistance of masonry walls. Based on the testing conditions, it is concluded that both the containment of air cells and mortar joints in the masonry wall assembly represent an asset rather than a liability to the thermal integrity of masonry envelopes. Analysis and comparison of these results with published data are included.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Average
Related to Research communities
Energy Research