Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/b978-0...
Part of book or chapter of book . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
CNR ExploRA
Part of book or chapter of book . 2019
Data sources: CNR ExploRA
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Renewable Energy-Powered Membrane Systems for Water Desalination

Authors: A. Albloushi; A. Giwa; D. Mukherjee; V. Calabrò; A. Cassano; S. Chakraborty; S.W. Hasan;

Renewable Energy-Powered Membrane Systems for Water Desalination

Abstract

In this chapter, recent membrane desalination operations integrated with renewable energy are presented and discussed. The main renewable energy sources that have been explored in recent studies are solar and wind energy. Reverse osmosis, membrane distillation, electrodialysis, and forward osmosis are the major desalination technologies that have been considered for integration with these renewable energy sources. Small-scale solar-powered systems are attractive for the production of fresh water in remote locations and rural areas where water and electricity infrastructures are unavailable. Wind energy-powered desalination systems have also been shown to be cost-effective than conventional systems powered by fossil fuels. Membrane desalination systems integrated with solar and wind energy sources have the capacity to produce fresh water through environmentally friendly approaches, and these systems are increasingly being used for water production at competitive costs.

Country
Italy
Keywords

Renewable energy, desalination, wind energy, solar photovoltaic, membrane operations

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average