Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/b978-0...
Part of book or chapter of book . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Enhanced Down-Stream Processing of Biobutanol in the ABE Fermentation Process

Authors: orcid Costin Sorin Bildea;
Costin Sorin Bildea
ORCID
Harvested from ORCID Public Data File

Costin Sorin Bildea in OpenAIRE
J. G. Segovia Hernandez; Iulian Patraşcu; orcid Anton A. Kiss;
Anton A. Kiss
ORCID
Harvested from ORCID Public Data File

Anton A. Kiss in OpenAIRE

Enhanced Down-Stream Processing of Biobutanol in the ABE Fermentation Process

Abstract

Butanol is considered a superior biofuel, as it is more energy dense and less hygroscopic than bioethanol, resulting in higher possible blending ratios with gasoline. However, the production cost of the acetone-butanol-ethanol (ABE) fermentation process is high, mainly due to the low butanol titer, yield, and productivity in bioprocesses. The classic recovery by distillation is an energy-intensive process that has largely restricted the economic production of biobutanol. Other methods based on gas stripping, liquid-liquid extraction, adsorption, and membranes are also energy intensive due to the bulk removal of water. This study proposes a novel process for the butanol recovery by enhanced distillation, using only several operating units in an optimized sequence to reduce costs. This work considers a plant capacity of 40 ktpy and purities of 99.4 %wt butanol, 99.4 %wt acetone and 91.4 %wt ethanol. The process was simulated and optimized using Aspen Plus as PSE tool. The enhanced process proposed here is cost effective and can be readily employed at large scale to improve the economics of biobutanol production.

Keywords

distillation, Chemical Engineering(all), process simulation, energy efficiency, ABE fermentation, Computer Science Applications

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?