
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
NUMERICAL SIMULATION OF THE FLOW AROUND A CIRCULAR CYLINDER AT HIGH REYNOLDS NUMBER

The viability and accuracy of large-eddy simulation (LES) with wall modeling for high Reynolds number complex turbulent flows is investigated by considering the flow around a circular cylinder in the supercritical regime. A simple wall stress model is employed to provide approximate boundary conditions to the LES. The results are compared with those obtained from steady and unsteady Reynolds-averaged Navier–Stokes (RANS) solutions and the available experimental data. The LES solutions are shown to be considerably more accurate than the RANS results. They capture correctly the delayed boundary layer separation and reduced drag coefficients consistent with experimental measurements after the drag crisis. The mean pressure distribution is predicted reasonably well at ReD=5×105 and 106. However, the Reynolds number dependence is not captured, and the solution becomes less accurate at increased Reynolds numbers.
- Center for Turbulence Research United States
- Stanford University United States
- Italian Aerospace Research Centre Italy
- Center for Turbulence Research United States
- Italian Aerospace Research Centre Italy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).256 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
