Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytical Biochemistry
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/10.1016/j.ab...
Article . 2014 . Peer-reviewed
Data sources: SNSF P3 Database
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rapid estimation of the energy charge from cell lysates using matrix-assisted laser desorption/ionization mass spectrometry: Role of in-source fragmentation

Authors: Steinhoff Robert F; Krismer Jasmin; Eyer Klaus; Fagerer Stephan R; Ibanez Alfredo; Pabst Martin; Zenobi Renato;

Rapid estimation of the energy charge from cell lysates using matrix-assisted laser desorption/ionization mass spectrometry: Role of in-source fragmentation

Abstract

Nucleotides are key players in the central energy metabolism of cells. Here we show how to estimate the energy charge from cell lysates by direct negative ion matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using 9-aminoacridine as matrix. We found a high level of in-source decay of all the phosphorylated nucleotides, with some of them producing considerable amounts of adenosine-5'-diphosphate (ADP) fragment ions. We investigated the behavior of adenosine-5'-monophosphate (AMP), ADP, and adenosine-5'-triphosphate (ATP) as well as the cofactors coenzyme A (CoA) and acetyl-coenzyme A (ACoA) and nicotinamide adenine dinucleotides (NAD⁺ and NADH) in detail. In-source decay of these compounds depends strongly on the applied laser power and on the extraction pulse delay. At standard instrument settings, the 9-aminoacridine (9-AA) matrix resulted in a much higher in-source decay compared with 2,4,6-trihydroxyacetophenone (2,4,6-THAP). By adding ¹³C-labeled ATP to a cell lysate, we were able to determine the degree of in-source decay during an experiment. Analyzing a cell extract of the monocytic cell line THP-1 with [¹³C]ATP as internal standard, we were able to obtain values for the energy charge that were similar to those determined by a reference liquid chromatography electrospray ionization coupled to mass spectrometry (LC-ESI-MS) method.

Related Organizations
Keywords

Cell Extracts, Time Factors, Metabolite analysis, Acetophenones, Nucleoside phosphates, Energy charge, MALDI-MS, ATP, Aminacrine, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, In-source decay, Energy Metabolism

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average