Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Biomaterialia
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydroxyl radical release from dental resins: Electron paramagnetic resonance evidence

Authors: Lamblin, Guillaume; Leprince, Julian Grégoire; Devaux, Jacques; Mestdagh, Michèle; Gallez, Bernard; Leloup, Gaëtane;

Hydroxyl radical release from dental resins: Electron paramagnetic resonance evidence

Abstract

It is well known that polymeric free radicals remain trapped inside dental resins for a long time after photopolymerization. Moreover, although these high molecular mass compounds have very limited mobility, there is evidence to suggest that they disappear progressively over time. The purpose of this study was to provide new experimental data to help understand this phenomenon. To determine whether low molecular mass free radicals are released by dental composites stored in hydrophilic media, we used electron paramagnetic resonance spectroscopy to perform spin-trapping experiments on experimental and commercial samples stored in ethanol. Under these conditions, ethoxy radicals were produced. Further experiments demonstrated that (1) hydroxyl radicals were released from the methacrylated resin and (2) they reacted with ethanol molecules to produce "secondary" ethoxy free radicals. In addition to the well-known monomer toxicity of methacrylated resins, we may have identified a new source of concern for these biomaterials.

Country
Switzerland
Related Organizations
Keywords

Time Factors, Ethanol, Free Radicals, Hydroxyl Radical, Ethanol / chemistry, Electron Spin Resonance Spectroscopy, Water, Free Radical Scavengers, Free Radical Scavengers / chemistry, Free Radicals / chemistry, Kinetics, Resins, Synthetic, Pyrroles / chemistry, Resins, Synthetic / chemistry, Water / chemistry, Pyrroles, Hydroxyl Radical / chemistry, Spin Trapping

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%
Related to Research communities
Energy Research