Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Acta Biomaterialiaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Biomaterialia
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return

Authors: Thorpe, Chavaunne T.; Klemt, Christian; Riley, Graham P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R. C.;

Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return

Abstract

The predominant function of tendons is to position the limb during locomotion. Specific tendons also act as energy stores. Energy-storing (ES) tendons are prone to injury, the incidence of which increases with age. This is likely related to their function; ES tendons are exposed to higher strains and require a greater ability to recoil than positional tendons. The specialized properties of ES tendons are thought to be achieved through structural and compositional differences. However, little is known about structure-function relationships in tendons. This study uses fascicles from the equine superficial digital flexor (SDFT) and common digital extensor (CDET) as examples of ES and positional tendons. We hypothesized that extension and recoil behaviour at the micro-level would differ between tendon types, and would alter with age in the injury-prone SDFT. Supporting this, the results show that extension in the CDET is dominated by fibre sliding. By contrast, greater rotation was observed in the SDFT, suggesting a helical component to fascicles in this tendon. This was accompanied by greater recovery and less hysteresis loss in SDFT samples. In samples from aged SDFTs, the amount of rotation and the ability to recover decreased, while hysteresis loss increased. These findings indicate that fascicles in the ES SDFT may have a helical structure, enabling the more efficient recoil observed. Further, the helix structure appears to alter with ageing; this coincides with a reduction in the ability of SDFT fascicles to recoil. This may affect tendon fatigue resistance and predispose aged tendons to injury.

Country
United Kingdom
Keywords

Models, Anatomic, 610, 600, In Vitro Techniques, Models, Biological, Tendons, Structure-Activity Relationship, Energy Transfer, Elastic Modulus, Tensile Strength, Animals, Computer Simulation, Horses

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    137
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
137
Top 1%
Top 10%
Top 1%