Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in Applied ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Applied Energy
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Applied Energy
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Introducing sodium lignosulfonate as an effective promoter for CO2 sequestration as hydrates targeting gaseous and liquid CO2

Authors: Hailin Huang; Xuejian Liu; Hongfeng Lu; Chenlu Xu; Jianzhong Zhao; Yan Li; Yuhang Gu; +1 Authors

Introducing sodium lignosulfonate as an effective promoter for CO2 sequestration as hydrates targeting gaseous and liquid CO2

Abstract

Hydrate-based CO2 sequestration (HBCS) emerges as a promising solution to sequestrate CO2 as solid hydrates for the benefit of reducing CO2 concentration in the atmosphere. The natural conditions of high-pressure and low-temperature in marine seabed provide an ideal reservoir for CO2 hydrate, enabling long-term sequestration. A significant challenge in the application of HBCS is the identification of an environmental-friendly promoter to enhance or tune CO2 hydrate kinetics, which is intrinsically sluggish. In addition, the promoter identified should be effective in all CO2 sequestration conditions, covering CO2 injection as gas or liquid. In this study, we introduced sodium lignosulfonate (SL), a by-product from the papermaking industry, as an eco-friendly kinetic promoter for CO2 hydrate formation. The impact of SL (0–3.0 wt.%) on the kinetics of CO2 hydrate formation from gaseous and liquid CO2 was systematically investigated. CO2 hydrate morphology images were acquired for both gaseous and liquid CO2 in the presence of SL for the explanation of the observed promotion effect. The promotion effect of SL on CO2 hydrate formation is optimal at 1.0 wt.% with induction time reduced to 5.3 min and 21.1 min for gaseous and liquid CO2, respectively. Moreover, CO2 storage capacity increases by around two times at 1.0 wt.% SL, reaching 85.1 v/v and 57.1 v/v for gaseous and liquid CO2, respectively. The applicability of SL as an effective kinetic promoter for both gaseous and liquid CO2 was first demonstrated. A mechanism explaining how SL promotes CO2 hydrate formation was formulated with additional nucleation sites by SL micelles and the extended contact surface offered by generated gas bubbles or liquid droplets with SL. The study demonstrates that SL as an effective promoter for CO2 hydrate kinetics is possible for adoption in large-scale HBCS projects both nearshore and offshore.

Related Organizations
Keywords

CO2 hydrate, Energy industries. Energy policy. Fuel trade, Sodium lignosulfonate, Kinetic promoter, CCUS, HD9502-9502.5, Liquid CO2

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%
gold