Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Alexandria Engineeri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Alexandria Engineering Journal
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Alexandria Engineering Journal
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling of the vibration and stability of a dynamical system coupled with an energy harvesting device

Authors: M.K. Abohamer; J. Awrejcewicz; T.S. Amer;

Modeling of the vibration and stability of a dynamical system coupled with an energy harvesting device

Abstract

This paper studies the vibrational motion of a dynamical system connected to an electromagnetic device, which is one of the energy harvesting (EH) devices that transform the vibrational motion into electric energy. This system has three degrees-of-freedom (DOF) and consists of two linked parts attached together; one is a nonlinear Duffing oscillator, and the other is a nonlinear damping spring pendulum. The regulating equations of motion (EOM) are achieved utilizing Lagrange’s equations and solved analytically applying the approach of multiple scales (AMS) till the third order of approximation. The accuracy of the attained solutions has been examined by comparing them with the numerical ones of the EOM. The time histories of the solutions and the nonlinear stability analysis of the modulation equations are represented graphically in various plots. The Poincaré maps and phase portraits diagrams displayed the stable behavior of the studied dynamical system. In addition, the different ranges of the stabilities are examined and discussed. In the electromagnetic device, the output power and current time series are depicted as a function of different values of the damping coefficients, excitation amplitudes, and load resistance. It is noted that the output current and power are dropped when the damping coefficient is raised. On the other hand, the increment of the excitation has a positive effect on the electrical generation and produces increment of the output power and current. Furthermore, the output power grows when the total resistance increases to accommodate the applied load. The EH device generates high output current and power at low-frequency values. The significance of this work is limited to the numerous uses of its outcomes in everyday life, such as powering medical devices, serving as a power supply for sensors, and serving as a backup energy source for some electronic devices.

Keywords

Energy harvesting, Perturbation methods, Engineering (General). Civil engineering (General), Electromagnetic device, Nonlinear dynamics, TA1-2040, Stability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 1%
gold
Related to Research communities
Energy Research